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The implementation of a multiple time-step method that produces factors of 1.5 to 2.5 
decrease in the computer time needed for performing molecular dynamics simulations of fluid 
alkanes is reported. The simulation method has been used to obtain a pair distribution 
function for n-butane that is compared with recent x-ray diffraction data. 

1. INTRODUCTION 

The study of fluids by computer simulation has assumed an important role that 
complements traditional theoretical and experimental studies. In recent years, 
computer simulations by Monte Carlo, molecular dynamics, and Brownian dynamics 
have been applied to fluids of increasing complexity, including those composed of 
molecules having internal degrees of freedom. There is vast literature on the use of 
Monte Carlo to study such problems as excluded volume effects in polymeric-type 
systems. However, it is only in the last several years that molecular and Brownian 
dymanics methods have been devised for simulating such complicated systems. The 
Brownian dynamics method treats a single chain molecule immersed in a continuum 
solvent and is, therefore, appropriate for study of single molecule properties, such as 
conformational dynamics. Molecular dynamics treats all molecules as explicit entities 
and, therefore, is appropriate for study of collective properties, such as intermolecular 
distribution functions. A coherent review of these methods and recent results for short 
chain molecules has been given by Evans [ 11. 

Because molecular dynamics simulates systems with large numbers of degrees of 
freedom, it is much more expensive to perform than Brownian dynamics. In this 
paper we report the successful implementation of a multiple time-step (MTS) method 
into the molecular dynamics algorithm for fluids of straight chain molecules. We 
have tested the MTS method on fluid n-butane and find that the method provides a 
substantial reduction in the computer time needed to perform simulations of such 
systems. 
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Previous molecular dynamics simulations of alkane fluids include the work of 
Ryckaert et al. [2-51, Weber [6, 71, and Szczepanski and Maitland [S]. In the work 
reported here we have adopted the skeletal model of alkanes used by Weber. In this 
model methyl and methylene groups are represented as soft spheres whose inter- 
molecular interactions are assumed to be Lennard-Jones (6, 9) potentials. 
Intramolecular interactions include harmonic potentials for bond vibration and bond 
angle bending plus a bond rotation potential. The rotational potential is dependent 
upon the dihedral angle about the bond, but also involves a Lennard-Jones (6, 9) 
interaction between methyl-methylene groups that are separated by two or more 
groups. Detailed expressions for these potential models and values for the potential 
parameters are given in [6, 91. 

Weber’s potential model offers the advantage of complete chain flexibility, thereby 
promoting a more realistic sampling of phase space [ 10, 111 than the Ryckaert 
model, which contains rigid bond lengths and bond angles. However, the presence of 
vibratory motion in the bond lengths and bond angles of Weber’s model necessitates 
use of a smaller integration time-step to maintain stable solutions to the equations of 
motion. The MTS method applied to Weber’s model partially compensates for the 
computational disadvantage of the smaller time-step. 

2. MULTIPLE TIME-STEP METHOD 

Multiple time-step methods are variants of the usual molecular dynamics method 
and typically execute considerably faster than the usual method without 
compromising the accuracy of the simulation results. The physical idea behind the 
method is that the force on a particle i, Fi, can be separated into two components 
whose rates of change are significantly different from one another. The rapidly 
varying component is due to interactions with nearest neighbors and is referred to as 
the primary force, Pi. The more slowly varying component is due to interactions with 
secondary neighbors, Si. We therefore write 

Fi = Pi + Si, (1) 

and 

si = _ c d”(rij) , 
j+i dri 

where ri is a location vector for particle i, rij = ]ri - rj/, u(rij) is the pair potential 
acting between particles i andj separated by distances rij, rc is the distance at which 
the potential is truncated, and ra is the radius of a sphere centered at particle i and 
enclosing the nearest neighbors of i. 
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During an MTS simulation, the primary force on particle i is calculated from (2) 
by sampling nearest neighbors in the usual way. However, the secondary force is 
calculated from (3) only at intervals of k time-steps. During the interim, Si is 
estimated by a Taylor series, 

Si(t + m At) = Si(f) + S,(t) m At + gi(f)(m At)*/2! + etc., m = I,..., k, (4) 

where the dots indicate time derivatives and At is the size of the integration time-step. 
Expressions for the first three time derivatives of a Lennard-Jones (6, 9) force are 
given in [9]. 

Since the calculation of the forces is by far the most time consuming portion of a 
molecular dynamics simulation, the decrease in computing time realized by the MTS 
method depends on the amount of computation that is avoided by using (4) instead of 
(3) for evaluating the secondary forces. Decreases in execution time by factors of two 
to five have been realized by applying the MTS method to atomic fluids at liquid 
densities [ 121. Versions of the MTS method have also been developed for fluids 
composed of rigid nonspherical molecules [ 131 and for fluids containing three-body 
interactions [ 141. The MTS method can be made more elaborate by dividing the 
region from ra to rc into a series of concentric spherical shells of secondary, tertiary, 
etc., neighbors and calculating the force in each on a different time scale, k, , k,, etc. 

1121. 
In molecular dynamics simulations of fluids composed of chain molecules with a 

total of N interacting sites in the system, the evaluation of the intermolecular forces 
requires calculation time proportional to N*, whereas the time needed for evaluation 
of intramolecular forces is proportional to N. Thus, we have applied the MTS method 
to the evaluation of the intermolecular forces and leave the calculation of 
intramolecular forces undisturbed. The procedure is exactly that outlined above in 
(1 t(4), with each methyl-methylene group designated by a subscript i in (l)-(4) and 
the F, on the 1.h.s. of (1) now representing only the Lennard-Jones intermolecular 
interaction. Hence, the total force on the ith methyl-methylene group is 

F. = FWra) + Pi + Si. I I (5) 

For skeletal models of chain molecules, therefore, the MTS method represented by 
(2~(5) differs from that for atomic fluids only by the presence of the intramolecular 
forces in (5). 

We have tested the MTS method on simulations of fluid n-butane and compared 
the results with our version of a “standard” molecular dynamics program (i.e., one 
not containing the MTS method) and with Weber’s published results [ 61 for n-butane. 
Our simulations of n-butane were carried out on systems of 64 molecules interacting 
via Weber’s inter- and intramolecular potentials with the following modifications. We 
truncated the Lennard-Jones potential at r/r, = 2.5, whereas Weber used r/r, = 5. 
Here, r,,, is the value of r at which the potential is a minimum, r, = 4 A. With this 
shorter cutoff distance, impulse forces due to particles crossing the cutoff disrupt the 
energy conservation of the simulation. To remove these spurious impulses, we 
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modified the Lennard-Jones truncated potential to a shifted-force potential given 
by I151 

44 = h(r) - UrJ - fhk)lr - rcL r c r,, 
(6) 

= 0, r>rc, 

where, for notational simplicity, we have written r for rij, uL3 is the (6, 9) Lennard- 
Jones potential, and F,,(r,) is the Lennard-Jones force at the cutoff distance. Static 
properties obtained from simulations using (6), as opposed to a simple truncated 
potential, can be readily corrected for the presence of the shift ] 15 1. 

3. RESULTS 

Our molecular dynamics program solves the Newtonian equations of motion for 
each methyl and methylene group using a fifth-order predictor-corrector algorithm 
due to Gear [ 161. Periodic boundary conditions and the minimum image criterion 
were applied on a methyl-methylene particle basis. Initial conditions were assigned as 
follows. One methyl group of each molecule was assigned to an FCC lattice site; the 
remaining methyl and methylene groups on each molecule were assigned positions at 
the equilibrium values for all bond lengths and bond angles with initial values for the 
dihedral angles randomly assigned. The initial values of the molecular velocities were 
randomly assigned, with each methyl and methylene group on the same molecule 
given the same initial velocity. These initial velocities were adjusted so the total linear 
momentum of the system was zero and the velocities were then scaled to produce the 
desired value of the kinetic temperature. 

The system was allowed to relax from these initial conditions by running the 
simulation over an equilibration period of about 2500 time-steps. During this 
equilibration the particle velocities were continually resealed to maintain the desired 
temperature. At the end of this equilibration, the velocity scaling was terminated and 
a further 300 time-steps were executed and discarded before the production phase of 
the simulation began. 

The MTS method contains three parameters whose values can be adjusted to 
obtain the maximum increase in execution speed for an allowed tolerance in some 
measure of the accuracy of the algorithm. The three parameters are r,. the radial 
distance at which primary and secondary neighbors are separated; n, the order of the 
Taylor series (4) used to estimate the secondary forces; and k, the interval at which 
the secondary forces are explicitly evaluated by (3) rather than by (4). We deter- 
mined optimal values of these three parameters by studying the average fractional 
deviation (AS) in the secondary force estimated by the Taylor series (4) S’, as 
compared to the true value given by (3), ST, 
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In our opinion using (AS) as a criterion for selecting values for the MTS parameters 
is a more direct and restrictive approach than making the choice based merely on 
considerations of total energy conservation. To initiate the procedure, we rather 
arbitrarily decided to choose MTS-parameter values such that the maximum (AS) 
value was about 0.05 (recalling that for dense fluids the secondary force is a small 
portion of the total force on each particle). We subsequently confirmed that in fact 
this is a conservative choice since energy conservation is maintained to a high degree, 
and property values from the MTS method are in satisfactory agreement with those 
from a standard simulation. 

Values of (AS) were obtained from test runs on 64 n-butane molecules at a density 
of 579 kg/m3 and a temperature of 750” K. The results are shown in Figs. 1 and 2. 
Figure 1 shows that the fractional deviation (AS) decreases in an expected fashion 
with increasing order of the Taylor series. We judged that slight gains in accuracy 
provided by a Taylor series of order n > 3 would not be sufficient to justify the 
deriving, coding, and storing of additional derivatives of the secondary force. In 
contrast, Fig. 2 indicates that for a given number of time-steps (AS) goes through a 
minimum as ra is increased. For small values of r, (< 1.1) there are quickly varying, 
first neighbor contributions to the secondary force, which lead to large errors in the 
Taylor series estimate. For large values of Y,(> 1.3) the magnitude of the secondary 
force ST is small, so the fractional deviation (AS) defined by (7) is again large. The 
presence of these two effects leads to optimal values for rrr in the range 1.1 < ra < 1.2. 
We find that the optimal values of ra and n are weak functions of the fluid state 
condition, so, based on Figs. 1 and 2, we used n = 3 and r,/r, = 1.1 in all our butane 
simulations. The optimum value of k is more dependent on state condition than n or 

(AS> 

5 10 

time-steos 

FIG. I. Effect of the order n of the Tylor series (4) on the accuracy of the MTS algorithm as 
measured by the average fractional deviation in the secondary force (7). This figure is from a simulation 
of n-butane at 579 kg/m’ and 750’ K. 
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FIG. 2. Effect of the value of the distance r. (at which primary and secondary neighbors are 
separated) on the accuracy of the MTS algorithm. Fluid same as in Fig. 1. 

ra; hence, we determined a value of k from a figure such as Fig. 2 for each state 
condition simulated. Typically, 5 < k ( 15, in units of integration time-steps. For the 
state condition of Fig. 1, we chose a conservative value of k = 5 time-steps. 

In Table I a sampling of properties from the MTS program is compared with 
results from our standard molecular dynamics program and with the published results 
of Weber [6]. Both the standard and MTS versions of our molecular dynamics 
program used neighbor lists to improve the execution speed of the simulations. In the 
standard version the neighbor list was constructed for all pairs having rij < 2.8r,, 
while in the MTS version the list was maintained on the primary neighbors only. The 
standard program showed a drift of 0.02% in the total energy over one psec, while 
the drift was twice that large in the MTS program. Our experience is that the drift in 
total energy may be as large as 0.1 o/o over one psec without detrimental effects on 
resulting property values. 

The results from the MTS program are in satisfactory agreement with the standard 
program results. The slight deviations are attributable to the difference in 
temperatures of the two runs. The results from the MTS program are in reasonable 
agreement with Weber’s, except for the pressure. The discrepancy in the values of the 
pressure is due to the difference in state condition, to the use of different values for 
the potential cutoff rC, and to the difference in run duration. Our values for the 
internal energy and the pressure shown in Table I include estimates for the long-range 
contribution beyond the cutoff rC. These estimates were obtained by making the usual 
uniform fluid approximation for r > rc; however, the pressure is more sensitive to this 
type of an approximation than is the internal energy. In addition to the properties 
shown in Table I, the inter- and intramolecular pair distribution functions from the 
three simulations are all in excellent agreement. 
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TABLE I 

MTS Simulation Results for n-Butane Compared with 
Our Standard Molecular Dynamics Program and with the Results of Weber [6] 

Weber 
Std 
MD 

MTS” 
MD 

Number butane molecules 100. 64. 64. 
LJ cutoff, rdr, 5. 2.5 2.5 

Run duration, psec 12. 8. 8. 

Time-step, psec 0.002 0.002 0.002 

Density, kg/m3 518. 519. 579. 

Temperature, “K 145. 767. 750. 

Internal energy, kJ/mol 48.0 48.9 48.8 

Pressure, MPa 100. 140. 130. 

Diffusion coefficient, 
lo* m*/sec 

Average ‘%I trans 

CPU time. min* 54.6 37.1 

3.3 3.7 3.6 

42. 50. 47. 

“r,= I.lr,, n=3, k=5. 
’ On an IBM 370/3033, FORTRAN IV-G compiler, double precision arithmetic. 

We have also used the MTS method in a simulation of n-butane and compared the 
resulting pair distribution function with the x-ray diffraction results of Narten et al. 
[ 171. The x-ray experiment was performed at 605 kg/m3 and 275” K. For this state 
condition we determined an optimum value of the MTS parameter k = 8 time-steps 
with n = 3 and ra = l.lr,. An 8 psec production run under these conditions required 
21.7 min of central processor time on an IBM 370/3033. 

The simulation and x-ray results for the distribution function are compared in 
Fig. 3. In the figure, both the simulation results (solid line) and the x-ray data 
(points) contain the end-to-end (l)-(4) intramolecular contribution to g(r), as well as 
the intermolecular contribution from methyl and methylene groups on different 
molecules. The (l)--(2) and (l)-(3) contributions have been suppressed in the figure 
since they are merely sharp Gaussian functions centered at positions corresponding to 
the equilibrium bond lengths and bond angles. To help distinguish the intra- from the 
intermolecular contributions in Fig. 3, we also show the (l)-(4) contribution 
obtained from the simulation (broken line). Thus, the simulation leads us to interpret 
the bump in the x-ray data at r z 3.1 A as due to gauche conformations and the first 
half of the double peak, at rr4.2A as due to trans conformations. The second half of 
the double peak, at r z 5.1 A, is actually the first main peak in the intermolecular 
part of the distribution function. The simulation qualitatively reproduces these details, 
although the gauche bump near r = 3.1 A is overshadowed by the leading edge of the 
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g(r) 

1.0 

0.5 

FIG. 3. Pair distribution function for methyl-methylene groups in fluid n-butane at 650 kg/m’. 
Points are x-ray diffraction data from Narten et al. I17 ] at 267” K. Lines are MTS-MD results at 
275” K. Solid line is the inter- plus (l)-(4) intramolecular distribution function. Broken line is the 
(l)-(4) intramolecular distribution function only. 

main peak in the intermolecular part of the distribution function. A slightly larger 
value for the potential parameter rm in the Lennard-Jones model and a weaker 
(lt(4) interaction in the intramolecular potential would improve the simulation 
result compared to the x-ray data. 

4. DISCUSSION 

We have shown that a multiple time-step method executes about a factor of two 
faster than a standard molecular dynamics algorithm for simulating fluid n-butane. 
The optimal speed increase depends somewhat on fluid state condition, but in any 
case the method introduces no error, within the statistical precision of the 
calculations, into values for macroscopic properties. Our tests of the method were 
performed on Weber’s skeletal model of alkanes and the increased execution speed 
provided by the MTS method helps compensate for the small integration time-step 
required by the model’s vibratory internal motions. The MTS method could also be 
applied to alkane models that use rigid bond lengths and bond angles. Indeed, the 
application of the MTS method to rigid polyatomic fluids has already been discussed 
in general terms in [ 131. 

In the algorithm described here the MTS method is applied only to the calculation 
of intermolecular forces; intramolecular forces are determined by the same procedure 
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as used in a conventional molecular dynamics program. Thus, this version of the 
method can, without modification, be applied to solutions of a chain-molecule solute 
in a solvent of spherical molecules. Further, for chains containing up to, say, eight or 
ten methylene groups, we expect the fractional savings in execution time to be only 
weakly dependent on the molecular chain length. For longer molecules, particularly 
for densities at which the molecules tend to entangle themselves, the present version 
of the MTS method may be less effective since a smaller fraction of first and second 
neighbors will be intermolecular methylene groups. 

One could contemplate extending the present method to include intramolecular 
forces in the MTS algorithm. This would be a possibility for Weber’s model, which 
has a direct Lennard-Jones interaction between methyl-methylene groups that are 
third neighbors and beyond. For such a model third neighbor interactions would have 
to be included in the primary not secondary forces, since conformational transitions, 
while infrequent, take place relatively rapidly. Further, if the Lennard-Jones potential 
were truncated at t-,/r* = 2.5, then neighbors beyond the eighth would not contribute 
to the intramolecular force in any case. Thus, the secondary forces would contain 
intramolecular contributions only from fourth through eighth neighbors. For short 
chains, such as hexane, there would probably be little speed advantage to including 
intramolecular forces in the MTS method. However, for longer molecules, such as 
approximations to polymeric materials, the inclusion of intramolecular interaction 
could be of substantial benefit. 
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